PXI8095_8096_8097 热电阻采集卡

产品使用手册 V6.01.01

■ 关于本手册

本手册为阿尔泰科技推出的 PXI8095、PXI8096、PXI8097 三款热电阻采集卡的用户手册,其中 包括产品功能概述、电气特性、使用方法、校准功能、产品应用注意事项及保修等。

为了方便阅读,下述将 PXI8095、PXI8096、PXI8097 三款采集卡简称为 PXI809X。

文档版本: V6.01.01

■ 选型指南

型号	通道	测量温度	测量范围	激励电流 (每通道)	连接器
PXI8095	8ch	PT100 RTD	0~400Ω	1mA	DB37 母座
PXI8096	20ch	-200 °C ~ 850 °C	0~400Ω	1mA	DIN41612-96P
PXI8097	20ch	PT1000 RTD -200 °C ~ 850 °C	0~4ΚΩ	0.1mA	DIN41612-96P

E 注: PXI8096、PXI8097 匹配 TB8096 前置式接线端子盒。

目 录

 选型指南. 1 快速上手. 1.1 产品包装内容 1.2 安装指导 1.2.1 注意事项 1.2.2 应用软件 1.2.3 软件安装指导 	2 5 5 5 5 5
 1 快速上手. 1.1 产品包装内容 1.2 安装指导 1.2.1 注意事项 1.2.2 应用软件 1.2.3 软件安装指导 	5 5 5 5 5
 1.1 产品包装内容 1.2 安装指导 1.2.1 注意事项 1.2.2 应用软件 1.2.3 软件安装指导 	5 5 5 5 5
 1.2 安装指导 1.2.1 注意事项 1.2.2 应用软件 1.2.3 软件安装指导 	5 5 5 5 5
 1.2.1 注意事项 1.2.2 应用软件 1.2.3 软件安装指导 	5 5 5 5
1.2.2 应用软件 1.2.3 软件安装指导	5 5 5
1.2.3 软件安装指导	5 5
	5
1.2.4 硬件安装指导	
1.3 设备接口定义	6
1.4 板卡使用参数	6
	_
■ 2 功能概述	7
21 产品简介	7
2.1 / 阳间/	
2.2 示沉恒国2.3 坝格参数	
2.3 流信 夕気	
2.3.2 输入特性	
2.3.3 PXI 同步信号	
2.3.4 板卡功耗	9
2.3.5 设备信息查询	9
■ 3 设备特性	10
3.1 板卡外形图	10
3.2 板卡尺寸图	11
3.3 接口定义	12
■ 4 模拟量输入	14
4.1 模拟输入连接方式	14
4.1.1 三线制测量	14
4.1.2 四线制测量	14
4.1.3 两种测量方法的对比	15
4.2 AI 数据采集注意事项	15
4.2.1 远离噪声源	15
4.2.2 高质量的同轴电缆	15
4.3 校准	15
4.4 AI 采集模式	

4.5	4.4.1 4.4.2 4.4.3 触发 4.5.1 4.5.2 4.5.3	按需单点采样 有限点采样 连续采样 类型 触发功能框图 软件强制触发 PXI Trigger 触5				
4.6	多卡[司步的实现方法.				
5)	产品(呆修	••••••		•••••	 21
5.1	保修.					
5.2	技术	支持与服务				
5.3	返修注	主意事项				
附:	录 A:	各种标识、	概念的命名	3约定	•••••	 22

1 快速上手

本章主要介绍初次使用 PXI809X 需要了解和掌握的知识,以及需要的相关准备工作,可以帮助用户熟悉 PXI809X 使用流程,快速上手。

1.1 产品包装内容

打开 PXI809X 板卡包装后,用户将会发现如下物品:

- PXI809X 板卡一个。
- 阿尔泰科技软件光盘一张,该光盘包括如下内容:
 1)、本公司所有产品驱动程序,用户可在文件夹\ART\ACTS6001\Driver\中找到产品硬件驱动程序。

2)、在文件夹\ART\ACTS6001\App\找到软件安装包。

3)、用户手册(pdf格式电子版文档)。

1.2 安装指导

1.2.1 注意事项

1)、先用手触摸机箱的金属部分来移除身体所附的静电,也可使用接地腕带。

2)、取卡时只能握住卡的边缘或金属托架,不要触碰电子元件,防止芯片受到静电的危害。

3)、检查板卡上是否有明显的外部损伤如元件松动或损坏等。如果有明显损坏,请立即与销售人员联系,切勿将损坏的板卡安装至系统。

4)、不可带电插拔。

1.2.2 应用软件

用户在使用 PXI809X 时,可以根据实际需要安装相关的应用开发环境,例如 Microsoft Visual Studio、NI Labview 等。

1.2.3 软件安装指导

在不同操作系统下安装 PXI809X 的方法一致,在本公司提供的光盘"\ART\ACTS6001\App\"中含 有安装程序 Setup.exe,用户双击此安装程序按界面提示即可完成安装。

1.2.4 硬件安装指导

通过 PXI 电缆连接板卡与系统, 开机后系统会自动弹出硬件安装向导, 用户可选择系统自动安装 或手动安装。

1)、系统自动安装按提示即可完成。

- 2)、手动安装过程如下:
 - ① 选择"从列表或指定位置安装",单击"下一步"。
 - ② 选择"不要搜索。我要自己选择要安装的驱动程序",单击"下一步"。
 - ③ 选择"从磁盘安装",单击"浏览"选择 INF 文件。

注: INF 文件默认存储安装路径为 C:\ART\ ACTS6001\Driver; 或安装光盘的 x:\ART\ ACTS6001\Driver。

④ 选择完 INF 文件后,单击"确定"、"下一步"、"完成",即可完成手动安装。

1.3 设备接口定义

PXI809X 相关接口信息可以参见本手册《接口定义》章节。

1.4 板卡使用参数

- ◆ 工作温度范围: 0°C ~ 55°C
- ◆ 工作相对湿度范围: 10% ~ +90%RH (无结露)
- ◆ 存储相对湿度: 5% ~ +95% RH (无结露)
- ◆ 存储温度范围: -40°C ~ +70°C

■ 2 功能概述

信息社会的发展,在很大程度上取决于信息与信号处理技术的先进性。数字信号处理技术的出现 改变了信息与信号处理技术的整个面貌,而数据采集作为数字信号处理的必不可少的前期工作在整个 数字系统中起到关键性、乃至决定性的作用,其应用已经深入到信号处理的各个领域中。实时信号处 理、数字图像处理等领域对高速度、高精度数据采集卡的需求越来越大。我公司推出的 PXI809X 热 电阻采集卡综合了国内外众多同类产品的优点,以其使用的便捷、稳定的性能、极高的性价比,获得 多家试用客户的一致好评,是一款真正具有可比性的产品,也是您理想的选择。

2.1 产品简介

PXI809X 系列热电阻采集卡是针对 PT100 或 PT1000 传感器设计的高分辨率温度测量模块,最高 支持 20 个热电阻测量通道,可为 3 线制或 4 线制电阻温度探测器提供集成式数据采集和信号调理; 借助于 24bit 的 ADC 芯片和针对电阻量测优化的模数转换机制,具有低至数十毫欧的电阻测量噪声; 模块采用电磁隔离设计,实现与 PXI 机箱及系统中的其他模块隔离。

图 2-2-1 PXI809X 系统框图

PXI809X 的系统框图如图 2-2-1 所示,主要由前端信号调理电路、ADC 模块、FPGA 模块及 PXI 通信模块组成,每4 路多路复用分配到1 个独立的 ADC 模块中。

2.3 规格参数

2.3.1 产品概述

产品型号	PXI809X
总线类型	PXI 总线
产品系列	热电阻采集卡

操作系统	XP、Win7、Win8、Win10		
板卡尺寸	标准半长 3U 160mm(长)*100mm(宽)		
法拉明	PXI8095: DB37 母座		
E 妆 奋	PXI8096、PXI8097: DIN41612-96P 匹配 TB8096 接线盒		

2.3.2 输入特性

型号	PXI8095	PXI8096	PXI8097	
通道	8ch	20ch	20ch	
测量温度	-200 °C~ 850 °C, PT	5100 RTD	-200 °C~ 850 °C, PT1000 RTD	
测量范围	0~400Ω	0~400Ω	0~4KΩ	
激励电流(每通道)	1mA	1mA	0.1mA	
ADC 分辨率	24 bits			
接线模式	3/4 线模式	3/4 线模式		
采样速率	单通道最高 100 S/s			
测量精度	±0.1% @校准时温度±10℃			
时钟源	板载晶振、PXI_CLK10M 时钟信号			
通道扫描模式	异步循环扫描			
共模电压范围	±10VDC (通道对 COM 端、通道间)			
共模抑制比(CMRR)	100dB			
噪声抑制比	70dB			
触发源	软件触发、PXI Trigger 触发			
存储深度	16K 字节 FIFO			
校准	开放于用户,软件界面手动校准			

2.3.3 PXI 同步信号

通道教	8 路 PXI_TRIG <07>,				
	1路PXI_STA	1 路 PXI_STAR			
电气标准	TTL 兼容	TTL 兼容			
士白坎甸	PXI_TRIG 可独立配置为输入或输出,				
刀 问 1 2 前	PXI_STAR 仅输入				
默认上电状态	输入				
松)四相击五	专中亚	最大电压	5V		
输入逻挥电半	尚电半 	最小电压	2V		

Technology

		最大电压	0.8V
	低电平	最小电压	0V
	高电平	最大电压	5V
松山山田石市五		最小电压	3.8V
新出逻辑电平 	低电平	最大电压	0.44V
		最小电压	0V
最大输入范围	0~5V		
上拉电阻	20 ΚΩ		
单通道驱动能力	±24mA		
过压保护	5V		

2.3.4 板卡功耗

型号	典型值 (W)	最大值 (W)
PXI8095	4	6
PXI8096	6	8
PXI8097	6	8

2.3.5 设备信息查询

厂文仲日	产品序列号
)冏编亏	其它

■ 3 设备特性

本章主要介绍 PXI809X 相关的设备特性,主要包括板卡外形图、主要元件功能说明、接口定义,为用户在使用过程中提供相关参考。

3.1 板卡外形图

图 3-1-1 PXI8095 外形图

图 3-1-2 PXI8096、PXI8097 外形图

图 3-1-3 TB8096 接线盒外形图

3.2 板卡尺寸图

图 3-2-1 PXI8095 板卡尺寸示意图

图 3-2-2 PXI8096、PXI8097 板卡尺寸示意图

图 3-2-3 TB8096 接线盒尺寸示意图

3.3 接口定义

		\frown	
		19	EX0
EX1	37	18	INO+
IN1+	36	0 10	
IN1-	35	0 1/	INU-
COM GO	34	0 16	COM GO
		15	EX2
<u>EX3</u>		o 14	IN2+
IN3+	32	12	IN2-
IN3-	31	0	1112
COM GO	30	0 12	COM GO
	1.00	_ 11	EX4
EX5	29	- 10	IN4+
IN5+	28		1114-
IN5-	27	0 4	
COM G1	26	0 8	COM G1
		0 7	EX6
	- 25	6	IN6+
IN7+	24	5	IN6-
IN7-	23		
COM G1	22	04	COM G1
NC		0 3	NC
		2 ²	NC
NC	20		NC
		┍╌┼	
	_	\sim	

图 3-3-1 PXI8095 端子引脚定义

表 3-3-1: PXI8095 端子引脚定义

信号名称	管脚特性	参考	管脚功能概述
IN<0~3>+			0~3通道 电阻测量正端
IN<0~3>-	Input	COM G0	0~3通道 电阻测量负端
EX<0~3>			0~3通道 电流激励端引脚
IN<4~7>+			4~7通道 电阻测量正端
IN<4~7>-	Input	COM G1	4~7通道 电阻测量负端
EX<4~7>			4~7通道 电流激励端引脚
COM G0/COM G1	GND		热电阻通道的隔离接地基准
NC	预留		未定义

图 3-3-2 PXI8096、PXI8097 端子引脚定义

表 3-3-2: PXI8096、PXI8097 端子引脚定义

信号名称	管脚特性	参考	管脚功能概述
IN<0~3>+			0~3通道 电阻测量正端
IN<0~3>-	Input	COM G0	0~3通道 电阻测量负端
EX<0~3>			0~3通道 电流激励端引脚
IN<4~7>+			4~7通道 电阻测量正端
IN<4~7>-	Input	COM G1	4~7通道 电阻测量负端
EX<4~7>			4~7通道 电流激励端引脚
IN<8~11>+			8~11通道 电阻测量正端
IN<8~11>-	Input	COM G2	8~11通道 电阻测量负端
EX<8~11>			8~11通道 电流激励端引脚
IN<12~15>+			12~15通道 电阻测量正端
IN<12~15>-	Input	COM G3	12~15通道 电阻测量负端
EX<12~15>			12~15通道 电流激励端引脚
IN<16~19>+			16~19通道 电阻测量正端
IN<16~19>-	Input	COM G4	16~19通道 电阻测量负端
EX<16~19>			16~19通道 电流激励端引脚
COM Gx	GND		热电阻通道的隔离接地基准

■ 4 模拟量输入

本章主要介绍 PXI809X 模拟量输入的相关性质,主要包括 AI 模拟量输入连接方式、AI 校准、AI 采集、AI 触发等,为用户在使用过程中提供相关参考。

4.1 模拟输入连接方式

PXI809X 支持三线制、四线制两种接法测量热电阻,测量方法的选择会影响测量精度。本章节讲述了两种不同的测量方法是如何工作的及其局限性。

4.1.1 三线制测量

图 4-1-1 三线制测量

4.1.2 四线制测量

四线测量是进行低值电阻测量的理想方法,此测试方法可以消除引线电阻的影响,如下图所示。

在四线测量中, EX 和 COM 端通过测试引线向电阻器提供电流, IN+和 IN-测试线连接到电阻器 两端测量电压,这种连接方法测出的电压不包括测试引线上的电压,并且电压表的输入阻抗足够高, 不会转移任何电流或产生误差电压,因此,测量值仅依赖于电阻,并且独立于测试引线电阻。 四线测量的结果非常准确,特别适用于低阻值的测量,甚至是 10mΩ 以下的测量。

4.1.3 两种测量方法的对比

当测试引线的电阻远小于所测量的电阻时,通常采用三线测量。对于大多数功能测试测量,结果 一般都足够好。

四线测量基本上消除了系统的测试引线电阻,在测量低值电阻时非常有用。当测试引线电阻发生 变化时,四线测量是最优选择。

4.2 AI 数据采集注意事项

电磁干扰会严重影响PXI809X的测量精度。为保证输入通道的噪声性能,有效降低串扰、环境噪声等对采集系统造成的影响,用户在测量现场连接待测信号源与设备时需要注意以下几点,以确保采集系统的测量精度。

4.2.1 远离噪声源

在信号传输至PXI809X的过程中,应尽量使连接线缆远离附近的噪声源,比如荧光灯、开关 电源、整流器、变压器、焊接设备、变频器、电动机等,若必须通过磁场干扰较强的设备附近, 需要将信号电缆穿过特定金属管道,以屏蔽存在的磁场干扰。同时,禁止将连接线缆与电源线缆 共用一个金属管道。另外,应将设备信号电缆尽可能远离大电流或高电压的传输线,或将该传输 线与设备信号电缆垂直放置,避免并行放置。

4.2.2 高质量的同轴电缆

选用高质量的同轴电缆可以将比如串扰、传输线效应、噪声等会降低系统精度的影响降到最低。在连接 PXI809X 时,建议使用具有良好屏蔽效果的同轴电缆。另外,在连接电缆时还需要保证线缆不存在严重形变等。

4.3 校准

PXI809X 校准开放于用户,在软件采集界面上就可以进行校准。

设备校准是用来校准板卡的硬件误差。产品出厂时已经校准,校准常量被保存在固定的存储区域。 由于误差会随着时间和温度变化,建议用户在需要时重新校准。

校准界面:

				~
±40100座(100座4119東210)				
热电偶电压	零点校准	满度电压(V)	满度校准	
热敏电阻		满度电阻 [13]		
通道0 ~	零点校准		满度校准	
		[确定	

校准方法:

零点校准:短接热电阻输入通道的 IN+、IN−、EX、COM 四个端口,点击热电阻电压的零点校准。 满度校准:按四限制接法接入满量程的阻值到输入通道,在满度校准框中写入用高精度万用表测量 的电阻值,点击满度校准,再点击确定,校准值写入成功。

ART

①AI 校准时,必须停止当前的所有采样任务方可进行。

②在 AI 校准开始前,请至少将采集卡预热 15 分钟,且自动校准时,采集卡不要连接任何外 部信号,即直接将连接到板卡接口的信号线拔下即可。

4.4 AI 采集模式

该采集卡的 AI 采集模式有按需单点采样、有限点采样、连续采样。

4.4.1 按需单点采样

按需单点采样可简单、方便的实现各通道单个点的采样,如图 4-5-1 所示。

按需单点采样功能是指用户根据需求,随时可以获取各个通道一个采样点的功能。该功能主要针 对简单采样或采样实时性要求较高、数据量很少且采样时间不确定的应用中。采集实时性比较高,可 方便的用于 PID, PLC 等实时的快速伺服闭环控制系统等场合。用户在每发出单点的读命令 (AI_ReadAnalog()或 AI_ReadBinary())后,设备快速的完成一次采集,各通道采集一个点,之后通过通 讯总线将采集的 AI 数据迅速的传给 PC 机。

图4-4-1 按需单点采集

在按需单点采样模式下,AI启动并被触发后,以AI最大采样频率作为转换时钟,按照预设的通 道顺序扫描采集,每通道各采集一个点,数据采集完成后将其传输到 PC 机完成一次单点采样。

① 在按需单点采样下, AI 转换频率受控于 AI 最大采样频率, 而 AI 的采样速率则受制于用 户的单点读命令。

② 在按需单点采样下, 时钟输出 CLKOUT 无效。

4.4.2 有限点采样

有限点采样功能是指 AI 在采样过程中,以设置的采样速率扫描各采集通道,采集过程中不停顿,每通道各采集预设采样长度(AIParam.nSampsPerChan)后自动停止采集的方式。

有限点采样用在已知采样总点数或采样总时间的采样任务中,尤其是用在带有触发的采样任务中。例如:需要在触发信号开始之后采集2秒钟长度的数据,使用有限点采样方式可以很方便的实现此需求。使用时,需要指定每通道的采样长度,或将需要采集的时间根据采样速率转换为每通道的采样长度,比如当每个通道需采集N个数据(nSampsPerChan=N),采样方式如图 4-4-2 和图 4-4-3 所示。

图4-4-3 外时钟有限点采样

在有限点采样模式下,AI启动后等待触发事件,被触发后,以预设的内时钟(图4-4-2)或外时钟(图4-4-3)作为AI采样时钟,按照预设的通道顺序扫描采集,每通道各采集N个数据完成后,数据通过通讯总线传输到 PC 机,至此完成一次有限点采集。若再次启动 AI采集,等待触发事件,重复上述动作直至停止采集。

① 在内时钟有限点采样模式下, AI 转换频率为设置的内时钟频率(由参数 fSampleRate 指定)。

② 在外时钟有限点采样模式下, AI 转换频率为外时钟频率, 其频率不能大于 AI 的最大采样 频率 。

4.4.3 连续采样

连续采样功能是指 AI 在采样过程中每相邻两个采样点的时间相等,采集过程中不停顿,连续不间断的采集数据,直到用户主动停止采集任务。采样方式如图 4-4-4 和图 4-4-5 所示。

图4-4-5 外时钟连续采样

在连续采样模式下,AI启动并开始触发后,以预设的内时钟(图 4-4-4)或外时钟(图 4-4-5)作为 AI采样时钟,按照预设的通道顺序扫描采集,采集完成后,继续扫描采集,以此循环直到用户停止 AI采集。

① 在内时钟连续采样模式下,AI 的采样速率由参数 fSampleRate 指定。

② 在外时钟连续采样模式下, AI 的采样速率为外时钟输入频率, 其频率不能大于 AI 的最大 采样频率。

4.5 触发类型

Ξ,

18

4.5.1 触发功能框图

PXI809X 支持软件触发、PXI Trigger 触发。各种触发方式可通过软件配置。

图 4-5-1 AI 触发功能框图

当用户使能通道模拟触发、数字触发、软件触发时,各触发信号满足触发条件即可生效,各触 发为或的关系。

4.5.2 软件强制触发

软件强制触发等同于外部数字触发和模拟触发。它的主要作用在于当启动任务后无法及时等到外部触发,用户随时可以发出软件触发以强制设备立即正常采样一次。也或者用户无须外部触发情况下时就要完成采样任务时,可以选择执行软件强制触发(AI_SendSoftTrig())动作。如图 4-5-2 所示。

开始采集	
软件强制触发	
AI工作脉冲	

图4-5-2 AI软件强制触发

4.5.3 PXI Trigger 触发

PXI Trigger 触发主要用于实现多卡同步采集,具体使用见多卡同步采集。

4.6 多卡同步的实现方法

PXI809X 使用背板的 PXI_CLK10M 时钟作为板卡的参考时钟, 配合使用 PXI_TRIG <0..7>触发总 线的设置, 不需要外接线缆即可实现多卡同步采集; 推荐两种配置方法来实现多卡同步, 下述将分别 介绍。

方法一: 主从卡级联触发控制多卡同步。

图 4-6-1 主从卡级联触发同步

主从卡级联触发同步方法参数配置:

	主卡参数配置	从卡参数配置
参考时钟选择	板载时钟/ PXI_10M	板载时钟/ PXI_10M
采样时钟时基选择	LOCAL	LOCAL
主采样时基输出使能	否	
触发源选择	软件强制触发	PXI_TRIG <07> 与主卡触发信号输出端口保持一致
触发信号输出	是	否

方法二: 主从卡级联时钟控制多卡同步。

图 4-6-2 主从卡级联时钟同步

主从卡级联时钟同步方法参数配置:

	主卡参数配置	从卡参数配置
参考时钟选择	板载时钟/ PXI_10M	板载时钟/ PXI_10M
采样时钟时基选择	Local	PXI_TRIG <07>
	LOCAL	与主卡时钟信号输出端口保持一致
主采样时基输出使能	是	否
触发源选择	软件强制触发	软件强制触发
触发信号输出	否	否

■ 5 产品保修

5.1 保修

产品自出厂之日起,两年内用户凡遵守运输、贮存和使用规则,而质量低于产品标准者公司免费 修理。

5.2 技术支持与服务

如果用户认为产品出现故障,请遵循以下步骤:

- 1)、描述问题现象。
- 2)、收集所遇问题的信息。

如:硬件版本号、软件安装包版本号、用户手册版本号、物理连接、软件界面设置、操作 系统、电脑屏幕上不正常信息、其他信息等。

硬件版本号:板卡上的版本号,如D228910-00。

软件安装包版本号:安装软件时出现的版本号或在"开始"菜单 → 所有程序 → 阿尔泰测 控演示系统 → ACTS6001 中查询。

用户手册版本号:在用户手册中关于本手册中查找,如 V6.01.00

3)、打电话给供货商,描述故障问题。

4)、如果用户的产品被诊断为发生故障,本公司会尽快解决。

5.3 返修注意事项

在公司售出的产品包装中,用户将会找到该产品和这本说明书,同时还有产品质保卡。产品质保 卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡、用户问题描述单同产 品一起寄回本公司。

22

附录 A: 各种标识、概念的命名约定

AI0、AI1.....AIn 表示模拟量输入通道引脚(Analog Input), n 为模拟量输入通道编号(Number).

AO0、AO1.....AOn 表示模拟量输出通道引脚(Analog Output), n 为模拟量输出通道编号 (Number).

CTR0、CTR1.....CTRn 表示计数器通道引脚(Analog Output), n 为计数器输入通道编号(Number). DI0、DI1.....DIn 表示数字量 I/O 输入引脚(Digital Input), n 为数字量输入通道编号(Number).

DO0、DO1.....DOn 表示数字量 I/O 输出引脚(Digital Output), n 为数字量输出通道编号(Number). ATR 模拟量触发源信号(Analog Trigger).

DTR 数字量触发源信号(Digital Trigger).

AIParam 指的是 AI 初始化函数中的 AIParam 参数,它的实际类型为结构体 PXIe5630_AI_PARAM. CN1、CN2......CNn 表示设备外部引线连接器(Connector),如 37 芯 D 型头等, n 为连接器序号 (Number).

JP1、JP2.....JPn 表示跨接套或跳线器(Jumper), n 为跳线器序号(Number).

阿尔泰科技

服务热线:400-860-3335 网址:www.art-control.com