A-GPRS1081

用户手册

北京阿尔泰科技发展有限公司

产品研发部修订

版权声明

本产品是由北京阿尔泰科技发展有限公司(ART Control)开发,受知识产权保护。任何人未经授权不得加以仿冒、盗用、非法拷贝。

此份文件内所述得内容,除了商标、产品和软件名称外,其余皆不得以任何形式复制、转换、重述后储存在 任何形式的系统中。除非经过阿尔泰科技发展有限公司的书面同意,否则不得以任何形式或文字转译本手册中所 述涉及知识产权的内容。

出现在本手册中的产品、公司名称,或属已注册商标或版权声明,其权利由其后所代表的公司所有,除了用 作说明和解释用途外,这些有版权或已注册商标、产品和公司名称不得仿冒。

法律责任

这本手册仅作参考之用,不作任何形式的保证。此文件主要目的在于提供使用者使用安装本产品的相关咨讯, 作为参考文件之用。使用者若沿用本手册内容作其他方面的使用参考而导致任何权益、产品等损害的话,本公司 不负任何责任,同时为产品更新之需要,本公司将保留修改本手册的权利,不再另行通知,未按本手册使用后果 自负。 目 录

1.1 概述	
1.2 产品特征	
1.3 产品包装核对表	
1.4 安装指导	6
1.4.1 软件安装说明	6
1.4.2 硬件安装说明	6
第二章 产品硬件说明	7
2.1 产品端子分布	7
2.2 模拟量输入	
2.3 模拟量输出	
2.4 数字量输入	
2.5 数字量输出	9
2.6 串口通信	
2.7 RS485 通信	
2.8 拨码开关	
2.9 电源	11
2.10 状态灯	11
2.11 电位器	
第三章 设备配置	
3.1 本地串口配置	
3.1.1 进入本地串口配置模式的方法	13
3.1.2 配置模式进入确认	13
3.1.3 配置模式的退出	13
3.1.4 GPRS-Config.exe 配置程序	
3.1.5 AT 配置参数协议	
3.2 短信配置	
第四章 功能设置说明	
4.1 导出配置	
4.2 导入配置	
4.3 复位 DTU 模块	
4.4 恢复出厂设置	
4.5 软件版本号(SWVER)	
4.6 设备名称(DTUNAM)	
4.7 SIM 卡号码(PHON)	

4.8	工作模式 (MODE)	
4.9	模块类型(DTUMODE)	19
4.10)主中心服务器的参数(SVRIP,SVRNAM,SVRPORT,CNTMODE)	
4.11	次数据中心服务器的参数(SVR1IP1,SVR1NAM1,SVR1PORT1,CNTMODE1)	19
4.12	2. 一批内目标重连次数、一批内目标重连间隔、两批间目标重连中断间隔(TRYCNT, T	RYTIM,
TRY	(SPAC)	19
4.13	,串口波特率(SERBAUD)	
4.14	↓ 串口数据位(停止位)长度(SERDAT, SERSTP)	
4.15	,串口校验类型(SERCHK)	
4.16	,心跳发送/接收间隔时间(BEATTIM)	
4.17	′心跳包数据设置(BEATDATA)	20
4.18	;帧间隔时间和数据包最大长度(SERS,MTU)	
4.19) 空闲下线时间(IDLETIM)	20
4.20)APN 名称、用户名、密码(APN,USRNAM,PWD)	20
4.21	本地端口号(LCOPORT)	
4.22	2 登陆密码(DTUPWD)	21
4.23	,调试信息(DBGINF)	
第五章	A-GPRS1081 测试程序说明	22
第六章	A-GPRS1081Mdbus 操作说明	23
第七章	故障诊断	26

第一章 简述

1.1 概述

A-GPRS1081 是基于 GPRS 无线数据传输终端设备,提供模拟量数据采集、数字量数据采集和模拟量数据输出,可以方便的实现远程、无线、网络化的通信方式。该设备轻松实现与 Internet 的无线连通。

A-GPRS1081 具有覆盖范围广(移动网络覆盖范围,能使用移动电话的地方就可以使用)、组网方便快捷(安装即可使用)、运行成本低(按流量计费)等诸多优点。

广泛应用于电力系统自动化、工业测控、交通管理、水利、气象、环境监控、金融、煤矿、石油等行业。

下图为 A-GPRS1081 模块在电力抄表系统中应用的示意图:

1.2 产品特征

- ◆ 8路16bit 差分隔离模拟量输入(±10V);
- ◆ 2路12bit隔离模拟量输出(0~5V/0~10V);
- ◆ 8路隔离数字量输入(干接点/湿接点共阳极)
- ◆ 8 路继电器数字量输出(30VDC、2A);
- ◆ 状态灯: 电源指示灯、程序控制运行灯、网络连接指示灯;
- ◆ 支持多数据中心;
- ◆ 支持数据中心动态域名或 IP 地址访问;
- ◆ 数据终端支持永远在线、空闲下线、空闲掉电三种工作方式;
- ◆ 支持断线自动重连功能;
- ◆ 支持本地图形界面配置与维护;
- ◆ 带有电源、连接状态、运行情况指示灯;
- ◆ 支持本地固件升级;
- ◆ 带有 RS-232/485 接口;
- ◆ 多重软硬件可靠设计,看门狗技术使设备安全运行;
- ◆ 单 +7V~+26V 宽范围供电(推荐 +9V~+12V);
- ◆ 工作温度: -20°C ~ +70°C;
- ◆ 工作湿度: 90%

如下图所示:

1.3 产品包装核对表

打开 A-GPRS1081 模块包装后, 你将会发现如下物品:

- 1、A-GPRS1081 模块一个
- 2、ART软件光盘一张,该光盘包括如下内容:

- a) 本公司所有产品驱动程序,用户可在 GPRS 目录下找到 A-GPRS1081 模块驱动程序;
- b) 用户手册 (pdf 格式电子文档);
- 3、一条9芯针对孔的直连线。

1.4 安装指导

1.4.1 软件安装说明

在不同操作系统下安装 A-GPRS1081 模块的方法一致,在本公司提供的光盘中含有安装程序 Setup.exe,用 户双击此安装程序按界面提示即可完成安装。

1.4.2 硬件安装说明

使用移动运营商的GPRS 网络,请购买该运营商的SIM 卡。在安装SIM 卡前,首先要把A-GPRS1081外壳 上的SIM 卡抽屉取出(SIM 卡抽屉位置下图1.4.2所示,取出时用一个尖锐物体(比如圆珠笔尖)按压抽屉旁的 黄色小点,使抽屉弹出,取出SIM 卡抽屉,抽屉取出后,把SIM 卡放在抽屉中,再把抽屉插回模块中。

放入SIM卡后将串口线与模块相连即完成硬件安装。

注意: 在模块通电的情况下严禁插拔SIM 卡。

图 1.4.2 SIM 卡抽屉

第二章 产品硬件说明

2.1 产品端子分布

产品端子分布图如图 2.1 所示。

2.2 模拟量输入

A-GPRS1081 模拟量输入为差分方式,提供±10V 的量程。

差分方式连接时,8路模拟输入信号正端接到 IN0+~IN7+端,其模拟输入信号负端接到 IN0-~IN7-端,具体连接方法如图 2.2:

注意:当进行 AD 模拟量采集时,必须先给 A-GPRS1081 模块供电,再给 AD 模拟量信号输入端接入外加信 号,才能保证有效采集。

2.3 模拟量输出

A-GPRS1081 带有 2 路(电压)分辨率为 12 位的模拟量输出。 连接方式如图 2.3,将外部的负载分别连接到 VOUT1 和 AGND 端口, VOUT0 和 AGND 端口。

VOUT1	⊘ 负载
VOUT0	⊘ 负载
AGND	
	图 2.3

2.4 数字量输入

A-GPRS1081 的 8 路隔离数字量输入(干接点、湿接点共阳极),输入连接方法如下面的图所示,其中,图 2.4-1 为干接点输入的连接方法,图 2.4-2 为湿接点输入的连接方法。

12 北京阿尔泰科技发展有限公司

图2.4-1 干接点

图2.4-2 湿接点共阳极

2.5 数字量输出

A-GPRS1081 数字量输出为继电器方式。连接方法如图 2.5:

2.6 串口通信

A-GPRS1081提供1个DB9公头连接器,为5线制串口。

图 2.6

注:这一个串行口在出厂时已经设置好配置方式,请根据 A-GPRS1081 上的标识确认连接方式。

2.7 RS485 通信

A-GPRS1081 提供 RS485 通信接口,接口标识等请参见产品端子分布图。

2.8 拨码开关

A-GPRS1081上的拨码开关 S2,用于切换串口连接方式。当拨码开关拨向"ON",表示"1",拨向另一侧表示 "0"。

当选择 RS485 方式时,第1、2位的拨码开关拨向"ON",第3、4位的拨向另一侧,示意图为:

当选择 RS232 方式时,第3、4位的拨码开关拨向"ON",第1、2位的拨向另一侧,拨码开关示意图为:

2.9 电源

电源连接示意图如下图, PWRIN 与 GND 连接供电电源。

2.10 状态灯

A-GPRS1081上配备4个LED指示灯。分别为PWR(电源指示灯)、DATA(通讯灯)、NET(网络状态灯)和GPRS(GPRS状态灯)。

PWR: 电源指示灯,当电源的连接到PWRIN和GND端子,通电后, PWR(电源指示灯)灯亮。 DATA: 通讯指示灯。

NET: 网络状态指示灯,闪烁时表示网络状态。

GPRS: GPRS状态灯,上电后,若GPRS状态等常亮,则表示GPRS网络存在。

各指示灯如下图所示:

2.11 电位器

A-GPRS1081 有 5 个可调电位器 (RP1、RP2、RP3、RP4 和 RP5), 它们的调节功能分别为:

RP1: VOUT1 模拟量输出零点调节

- RP2: VOUT0 模拟量输出零点调节
- RP3: DA 模拟量输出满度基准调节
- RP4: VOUT1 模拟量输出满度调节
- RP5: VOUT0 模拟量输出满度调节

第三章 设备配置

有2种方法可对模块进行配置:本地串口配置和短信配置。

3.1 本地串口配置

A-GPRS1081功能强大,有很多配置参数,为此我们提供了两种方便的配置方式:本地串口配置和短信配置。 其中本地串口配置方式包括"字符配置方式"和"图形配置方式"。其中字符配置方式不需要专用工具,只需一个串 口调试工具即可,该方式直接使用配置命令操作模块。图形配置使用专用配置工具(软件与产品配套提供),软 件界面友好并且使用方便。从本质上来说图形配置也是用配置命令来设置模块的,只不过配置工具完成了所有命 令的发出和解析。所以用户也可以编写自己的配置工具。

整个配置流程如图 3.1 所示,下面的内容将按流程顺序分别介绍各个操作步骤,为了使您可以方便正确的 配置和读取这些参数,请仔细阅读这些的内容。

图 3.1

备注:本地和短信配置:模块只能同时处理一条命令,在该命令处理结束前模块不接受新的命令。也就是说 命令配置必须逐条进行,即一条指令有了操作结果后才能进行下一条命令的操作,否则模块将抛弃后面的指令。

3.1.1 进入本地串口配置模式的方法

该方式适合工作人员在设备安装现场调试时使用,或者是用户设备对A-GPRS1081的自动配置。 硬件连接如图 3.1.1 所示,需将模块设备与电脑的串口连接。

图 3.1.1 本地串口配置示意图

进入本地串口配置模式有两种方式,如下所述:

- 在模块上电时:根据图 3.1.1 所示的配置流程可知,模块在上电时会检测串口上是否有ASCII 码为""(空格,十六进制数为0x20)的数据出现,有则认为用户要求进入配置模式。所以我们只需要在模块上电前,通过串口不断向模块发送空格字符串,对应的HEX 值为"0x20"(按住键盘空格键,波特率57600、8 位数据位、1 位停止位、无校验),然后给模块通电,即可进入配置模式。由这种方式进入配置模式,默认是打开调试信息功能的(有回显,方便用户使用超级终端等工具进行配置)。
- 在模块正常工作时:如果模块正处于正常通信状态,那么通过串口向模块发送++ in set字符串命令(波特率 等数据格式为模块工作值),可使模块退出当前工作模式,进入配置模式。

3.1.2 配置模式进入确认

如果成功进入配置模式,模块将返回字符串"OK"(大写字母)。

3.1.3 配置模式的退出

A-GPRS1081配置结束后,如果要进入设置好的工作模式,则需要通过串口或远程的服务器向模块发送控制 命令中的"退出配置模式"命令(OUTSET)。如果之前的设置不影响一些关键参数,系统将直接进入工作模式, 否则将自动复位模块系统。

3.1.4 GPRS-Config.exe 配置程序

A-GPRS1081 进入 GPRS-Config.exe 配置模式状态方法: (先不要给模块上电)

- 1、 将相应的串口与模块相连。
- 2、 单击"进入配置状态"按钮,然后迅速给 A-GPRS1081 上电。(如下图)

本地串口配置	
□ 本地设置	
模块型号	中니方 COM1 ×
设备ID号	波特率 115.2 は 🗸
设备软件版本号	
设备名称	数据位 8 💙
SIM卡号码	唐書作 1
工作模式	
模块类型	
传输模式	
日日标发音	
甲心致生	
服务器DNS1	
服务器DNS2 计数据中心 as	退出配置状态
主致指甲心理	
主致结中心现名	获取信息
土剱猪中心病口亏	
主 数据中心注意误见。	保存设置
备用数据中心II 冬田数据由心栅权	
各用数据中心线值 久用数据由心端口具	复位加加模块
田田数路中心编出号 各田数据由心弦接超式	and taken a restory to
	恢复出厂设置
一批内日标重连间隔	(Course and Courses)
两批间目标重连中断间隔	导出配置
日传输控制	
串口波特率	导入配置
中口粉提合化在	

3、 单击"获取信息"按钮,即可读取模块配置信息,也可等待几秒自动获取信息。

4、 界面左边"本地串口配置"列表中的项目,根据你的需要可以进行修改,修改后点击"保存设置"即可。

3.1.5 AT 配置参数协议

在DTU进入配置模式后,即可向DTU发送带有配置信息的命令帧,通过命令帧对DTU参数进行读写。命令 帧全部使用ASCII字符,这方便用户在没有配置工具的情况下使用超级终端进行参数配置,同时也让用户在自己 的设备上很容易编写DTU配置程序。命令帧结构如表3.1.5-1所示。命令分为两类,写命令与读命令,写命令用于 配置DTU的参数,读命令用于查询DTU当前的配置。它们格式上的区别在于读命令不带有配置参数,并且命令 代号后的字符不同,写命令为"=",表示赋值。读命令为"?",表示询问。

命令帧类型		格式		
1	写命令	AT+命令代号=参数/r/n		
写	正确	OK\r\n		
应	命令错	ERR CMD\r\n		
答 参数错		ERR DATA\r\n		
ì	卖命令	AT+命令代号?/r/n		
ì	卖应答	命令代号=参数/r/n		

表 3.1.5-1 配置命令帧格式

说明:

- 1、命令帧中所有数据为ASCII编码的字符,所有输入字符不分大小写;
- 2、命令代号,根据表3.1.5-2查得;
- 3、写命令帧中的参数长度受限制,最大长度由表3.1.5-2查得。

表 3	.1.5-2 模	块功能设	置列表	,

	功能名称	类型	代码	最大长度	设置值
	模块型号	R	DTUTYPE	10	如"ART1090"
	设备ID号	R	DTUID	15	为设备唯一ID,不可改写
	设备软件版本号	R	SWVER	5	如V1.00
本 地	设备名称	R W	DTUNAM	15	ARTDTU01
设 置	SIM卡号码	R W	PHON	11	如"15810437433"
	工作模式	R W	MODE	1	0: 永远在线, 1: 空闲下线, 2: 空闲掉电
	模块类型	R W	DTUMODE	1	0: 客户端, 1: 服务器端, 2: CSD客户端, 3: CSD服务器端
	中心数	R W	SVRCNT	1	1~2
目	DNS1	R W	DNS1IP	15	如"202.106.0.20"
标 设	DNS2	R W	DNS2IP	15	如"211.136.17.107"
置	主数据中心IP	R W	SVRIP	15	如"221.218.157.55"
	主数据中心域名	R W	SVRNAM	40	如"www.sohu.com"

	主数据中心端口	R W	SVRPORT	5	如"80"
	主数据中心连接模式	R W	SVRMODE	1	0: 建立TCP连接 1: 建立UDP连接
	备用数据中心IP	R W	SVR1IP	15	如"192.168.0.1"
	备用数据中心域名	R W	SVR1NAM	40	如"www.163.com"
	备用数据中心端口	R W	SVR1PORT	5	如"80"
	备用数据中心连接模式	R W	SVR1MODE	1	0: 建立TCP连接 1: 建立UDP连接
	一批内目标重连次数	R W	TRYCNT	2	从1(无限制)~99
	一批内目标重连间隔	R W	TRYTIM	5	从10~65534(单位:秒)
	串口波特率	R W	SERBAUD	6	从300~115200
	串口数据位长度	R W	SERDAT	1	从5~8
	串口停止位长度	R W	SERSTP	1	从1~2
	串口校验类型	R W	SERCHK	4	详细说明
传 输	心跳包间隔时间	R W	BEATTIM	5	从30~65534(单位:秒)
控 制	心跳包超时时间	R W	BEATOUT	5	从30~65534(单位:秒)
	心跳包数据设置	R W	BEATDATA	2	一字节16进制数,如:"FE"
	数据包最大长度	R W	MTU	4	从1~1024(单位:字节)
	空闲下线时间	R W	IDLETIM	5	从30~65534(单位毫秒)
	是否本地串口访问	R W	ISLOCAL	1	0: GPRS 1: 本地串口
	APN	R W	APN	20	默认为空
网 络	APN用户名称	R W	USRNAM	20	默认为空
参 数	APN密码	R W	PWD	20	默认为空
	短信中心号码	R W	SMSNO	14	默认为空

12 北京阿尔泰科技发展有限公司

	本地端口号	R W	LCOPORT	1	默认"2020"
	短信认证用户1	R W	USERNO1	14	
	短信认证用户2	R W	USERNO2	14	
	短信认证用户3	R W	USERNO3	14	
	模块登陆密码	R W	DTUPWD	6	默认为"888888"
	复位当前固件	W	RSTDTU	2	ON: 输出
	恢复出厂设置	W	DEFAULT	2	ON: 使能
	列出系统所有已配置参数	R	CFGLIST		
控制	保存当前参数	W	CFGSAVE	2	ON: 输出
命 令	进入配置模式	W	++ in set	9	该命令区分大小写
	退出配置模式	W	++ out set	10	该命令区分大小写
	调试信息输出	R W	DBGINF	3	ON:有; OFF:无

3.2 短信配置

短信配置则是在手机上输入命令进行配置,但请注意:

只支持一条短信一条命令,格式为:6位密码+":"+命令(不用前缀"AT+")。所有字符采用西文。只有在 手机号码为认证号码且密码通过的情况下有效,短信唤醒命令为"WAKEUP"。

短信配置支持电话唤醒:电话持续时间必须大于2次振铃,且是在挂断电话后唤醒。

第四章 功能设置说明

4.1 导出配置

可以保存您所修改的配置项目。

4.2 导入配置

将你以前保存过的配置项目加载。

4.3 复位 DTU 模块

当使用该项目时,模块将执行一次软件复位动作。

4.4 恢复出厂设置

当使用该项目时,模块将恢复出厂设置,主要用于模块配置错乱后恢复出厂设置。

4.5 软件版本号(SWVER)

它们反映了该模块的软件版本信息,参数由厂家设定,用户无法修改。用户在寻求技术支持时,提供这些信息可以得到更有针对性的建议。

4.6 设备名称(DTUNAM)

当使用多台模块时,可使用该项配置区别不同的设备。设备名称限定为15字符。

4.7 SIM 卡号码(PHON)

该参数需要用户配置,而并非模块自动生成的。这个参数不是系统运行的条件参数,即它不会影响模块的运行状态,它用于服务器端读取模块的手机号码。该参数为11 位ASCII 字符,如"15810437433"。

4.8 工作模式(MODE)

A-GPRS1090I有三种工作模式,"永远在线模式"、"空闲下线模式"和"空闲掉电模式"。

- **永远在线模式**:模块上电会后主动连接预先设定好的服务器,并一直维持着在线状态,随时都可以快速的进行数据传输。
- 空闲下线模式:模块上电后会主动连接预先设定好的服务器,如果在一段时间内没有进行数据传输(数据中 心端没有发数据,串口设备端也没有发数据),模块将断开与服务器的连接,进入休眠状态。通信的空闲时 间可以在"传输控制"中使用"空闲下线时间(IDLETIM)"配置命令进行设定,设定时间最短30秒,最长65536 秒,步进一秒钟。在模块断开与服务器的连接后,有三种方法使模块与服务器之间重新建立连接。

第一种是向模块的串口发送数据,模块将在连接服务器成功后将这些数据送出。

第二种是通过电话唤醒,只要拨打模块 SIM 卡的号码,接通后,铃声连续响 2 次以上之后主动挂断, 模块将会重新与服务器之间建立连接,即设备被唤醒。

第三种是通过短信唤醒模块。在配置工具中将短信认证用户中的任意一个写上被唤醒的号码,号码格式为+861********。发短信的命令格式为 888888:Wakeup。发送成功后模块将会返回一个信息,信息内容为OK,说明模块与服务器连接成功,即设备被唤醒。

空闲掉电模式:该模式的工作情况与"空闲下线模式"类似,不同之处是工作于"空闲掉电模式"的模块在断开 与服务器的连接后,模块将切断GPRS 模块的供电,并使整个系统进入掉电状态,达到低功耗的目的。在系 统掉电的状态下整机功耗小于14mA,适合用电池供电、间歇性通信的场合。

在"空闲掉电"模式下,只有一种方法可以使模块与服务器之间建立连接(唤醒模块设备),即向模块设备的串口发送数据,模块设备将在连接服务器成功后将这些数据送出。

4.9 模块类型(DTUMODE)

该参数用于设置模块的功能模式,当DTUMODE 配置为"CLIENT"时,模块将作为客户端主动连接数据中心服务器;当DTUMODE 配置为"SERVER"时,模块将作为服务器等待客户端的连接。在使用点对点功能时,将一个模块配置为"SERVER",另一个配置为"CLIENT"。

4.10 主中心服务器的参数(SVRIP, SVRNAM, SVRPORT, CNTMODE)

一个目标服务器的设定包括IP 地址和端口号,如果服务器没有固定的IP 地址,可以使用域名。在服务器的 IP 地址有效时,域名项将被忽略。在网络通信中,有TCP 和UDP 两种方式通信。其中TCP 通信是基于连接的 通信方式,通信一方为服务器,另一方为客户端,在初始状态下服务器处于监听状态,等待客户端的连接,客户 端则需要主动连接服务器,实际应用中数据中心通常为服务器模式,而模块通常为客户端模式。在TCP 通信方 式下,任何一方在收到对方的数据包后都要进行应答,所以该方式具有通信可靠的优势,但是在通信速度上会稍 慢于UDP 方式。UDP 方式是不基于连接的通信方式,通信双方都是平等的,任何一方在收到对方的数据包后都 无需进行应答。因为通信过程的简化,所以UDP 方式具有通信速度较快的特点,但是稳定性和数据可靠性不如 TCP方式。

当使用TCP 方式建立连接时,模块作为TCP 客户端(Client),数据中心服务器作为TCP 服务器(Server), 该方式下模块登陆数据中心服务器后即可进行数据交换;而当使用UDP 方式连接时,则不存在上述关系,数据 中心主机和模块都要建立一个UDP 连接。因为模块处于移动运营商的内网,所以公网(Internet)上的网络设备 无法直接和模块通信,在这种情况下,只能由模块主动连接公网设备,而当模块使用UDP 方式发送数据到数据 中心时,数据包会携带其IP 地址和端口号信息,数据中心主机收到该数据包后,可根据该信息建立一个到模块 的UDP 连接,建立成功后,双方即可进行数据交换。但是因为GPRS环境下UDP 方式存在不稳定、易丢包的问 题,所以不推荐使用UDP 方式。

4.11 次数据中心服务器的参数(SVR1IP1,SVR1NAM1,SVR1PORT1,CNTMODE1)

一个目标服务器的设定包括IP 地址和端口号,如果服务器没有固定的IP 地址,可以使用域名。在服务器的 IP 地址有效时,域名项将被忽略。在多次尝试连接主中心服务器失败后,模块将自动切换为连接备用中心服务器。在使用备用服务器时,如果是正在进行远程配置时连接突然断开,模块将重新连接备用服务器。如果是处于 工作模式时连接突然断开,目标服务器将切换回主中心服务器。

4.12 一批内目标重连次数、一批内目标重连间隔、两批间目标重连中断间隔

(TRYCNT, TRYTIM, TRYSPAC)

为了增加数据中心的安全性,模块在登录上目标服务器时会发送一包称为"注册包"的数据。在注册包中会包 含参数,用户软件如果发现登录密码不符,可以拒绝设备的登录。"登录密码"可以设置成任何8 字节长的字符串。

其中目标重连次数用于控制同一批连接中同一目标的连接次数,为0 时表示连接不分批次(即连接中断间隔 参数无效)。目标重连间隔用于控制两次尝试连接的间隔时间,最小10s,最长65534 秒。目标重连中断间隔用 于控制两批连接的间隔时间,最小1 分钟,最长65534分钟。

举例说明,假设现在配置重连次数为5 次、重连间隔为200s、重连中断间隔为10 分钟,并且主中心和备用 中心的IP 及端口号都有设置。那么模块工作后,将首先尝试连接主中心,如果连接失败,将以间隔200s 的间隔, 重复尝试连接主中心,直到5 次连接机会用光。接下来,模块将延时200s 后切换目标服务器,尝试连接备用中 心,如果连接失败,将以200s的间隔,重复尝试连接备用中心,直到5 次连接机会用光。至此,一批连接尝试结 束了,模块进入"连接中断间隔"延时,延时10 分钟后重复上面的过程,启动下一批连接尝试。整个过程周而复 始,直到模块连上一个服务器为止。

4.13 串口波特率(SERBAUD)

该参数控制模块串口的通信波特率,必须使用标准波特率进行通信,支持的波特率如表 4.13 所示。

			表	4.13	支持的	力波特率			
	标准波特率								
300	600	1200	2400	4800	9600	19200	38400	57600	115200

4.14 串口数据位(停止位)长度(SERDAT, SERSTP)

这些参数控制着串口字符数据的格式,用户根据自己串口设备的要求来设定。

4.15 串口校验类型(SERCHK)

该参数控制模块串口通信时的校验类型,取值关系如表 4.15 所示。

表4.15 串口校验类型与参数的对应关系

波特率	无校验	奇校验	偶校验	强制为1	强制为0
设置值	NON	ODD	EVEN	1	0

4.16 心跳发送/接收间隔时间(BEATTIM)

模块连接上服务器后,如果长时间没有产生数据流,这条连接将被运营商切断。为了保持连接的激活状态, 模块将间歇性的向服务器发送一字节无意义的数据,这个数据称为心跳包。两个心跳包之间的间隔时间可以根据 当地的网络情况来设定,一般为数十秒。

用户可以通过这个参数来设置心跳包间隔时间,取值范围为30~65534(单位:秒)。

4.17 心跳包数据设置(BEATDATA)

用户也可以自行设定心跳数据,如:"0x3F",使用AT 指令配置时,格式为:"AT+BEATDAT=3F"

4.18 帧间隔时间和数据包最大长度(SERS,MTU)

在串口收到一个字节数据后,如果在设定的帧间隔时间内没有收到新的数据,那么该字节之前的串口数据作 为一包,下一字节数据作为下一包的开始。如果用户对传输的数据有分帧的要求,那么可以使用该方法分包。

在GPRS 网络中过大的数据包会增加传输延时,并且容易丢失,所以可根据当地网络的情况合理的设置数据 包最大长度。当接受到的数据达到最大数据包数量时,模块就将它们作为一个数据包发送,这些动作对用户来说 是透明的(也可以说是隐蔽的)。

`**注意**:如果"帧间隔时间"或者"数据包最大长度"设置得过小,那么**模块**发出的网络包中用户数据所占比例 会下降,将导致流量上升。如果设置得过大,那么会导致**模块**发出的数据包变大(不会超过"最大包长"值),传 输延时也会增加。具体参数用户可以自己把握,如果对数据没有分帧要求,建议"帧间隔时间"设置为数百毫秒(默 认值为100ms),"数据包最大长度"设置为数百字节(默认值为512字节)。

4.19 空闲下线时间(IDLETIM)

参看"4.8 工作模式"小节的说明。

4.20 APN 名称、用户名、密码(APN, USRNAM, PWD)

这些参数通常使用默认值即可。如果使用专用的VPN 卡,那么这些参数根据实际情况填写。

4.21 本地端口号(LCOPORT)

该参数用于设置模块作为"SERVER"时的本地端口。使用点对点连接时,当一台模块作为服务器时,另外一台模块就将该端口当作目标端口,建立和它的TCP 或UDP 连接。

4.22 登陆密码 (DTUPWD)

当授权用户使用短信配置**模块**时,必须发送正确的**模块**登陆密码,否则无法进行配置。该参数长度为6 位(任意字符)。

4.23 调试信息(DBGINF)

该参数控制着配置模式下输入模块的数据是否"回显",并且控制着设备的"调试信息"是否输出。

"回显":如果使用超级终端之类的工具配置模块时,超级终端本身并不能显示您在超级终端输入的数据,需 要模块把获得的数据从串口回传,这样才能在超级终端上显示您输入的内容。如果使用单片机等设备来自动配置 本模块,那么回显功能就没有什么用处,可以关闭该功能。

"调试信息":为了方便工作人员在现场调试模块时观察模块的工作情况,模块会从本地串口上打印出设备的工作信息,比如正在连接服务器的信息等。在系统调试结束后,调试信息就没有用处了,可以关闭该功能。

第五章 A-GPRS1081 测试程序说明

测试应用程序框架如下图所示:

Server 端口号:8000 所有客户端	端 다号 ⁶⁰⁰⁰ 启动	关闭 退出
	首通道 0 功能 ▲D 末通道 7 读取	□ 定时读取 时间间隔 <mark>10 s</mark> ○ Hex ○ Txt
	ر چ ا	发送
		清空
		ЛЕХ
	安 (7)	
	b	清空
	居	
	()	
	服务器创建成功	

说明:

默认监听端口 5000, 服务器程序只有一个对外开放监听端口, 最大允许 1000 个客户端连接。可以手动读取 AD、DI、DO、DA, 也可以通过定时器读取。

工作流程:

- 1、在端口号编辑框中输入端口号,单击"启动" 局动 按钮开启监听端口。
- 2、程序界面左侧的树形框如果有客户端连接,则可以对该模块进行访问。

功能 AD 🗸

- 3、 "功能选择框"可以进行选择不同功能的操作,读取模块数据,接收数据显示在"接收数据" 编辑框中。
- 4、^{时间间隔 10} 。可以定时读取模块数据。

第六章 A-GPRS1081Mdbus 操作说明

设置 GPRS1081 为本地串口工作模式,设置本地设备地址(Modbus 设备地址),如下图所示:

出事口配置			
主数据中心连接模式			
备用数据中心IP		1.0000	串口号 COM1 ¥
备用数据中心域名			油時率 115 2 11 4
备用数据中心端口号			115.2 KD
备用数据中心连接模式			数据位 💈 😽 😽
一批内目标重连次数			
一批内目标重连间隔			停止证 📉
两批间目标重连中断间隔			校验位 无 😽
3 传输控制			CONTRACTOR
串口波特率			进入配置状态
串口数据位长度			ALT HOLE VIE
串口停止位长度			退出配署状态
串口校验类型			LASTING ACTIVICS
心跳包间隔时间(s)			莽取信自
心跳包趋时时间(s)			
全兩下號的间			但左沿署
一定百个地中口切问	4地中山		E E E E
4.111111			包位加加福也
A DW			35120 x 01966/
ADV田白夕称			恢复中口语署
APN205-FA			INSCUIV EXE
销信中心号码			
短信认证用户1			
短信认证用户2			□ ○ λ 約署
短信认证用户3			
134+h 9%R+ str 17		M	
本地设备ID			Language Chinese 🔪
从1~254			a) and had a

1. 读取输入寄存器(对应 AD)

	Hex 格式
从机地址	01
功能码	04
寄存器起始地址高位	00
寄存器起始地址低位	00
寄存器个数高位	00
寄存器个数低位	10
CRC 低位	F1
CRC 高位	C6

对应的命令为: 01 04 00 00 00 10 F1 C6

2. 读输入位状态(对应 DI)

	Hex 格式
从机地址	01
功能码	02
寄存器起始地址高位	00
寄存器起始地址低位	00

寄存器个数高位	00
寄存器个数低位	08
CRC 低位	79
CRC 高位	CC

对应的命令为: 01 02 00 00 00 08 79 CC

3. 强制多个线圈 (对应 DO)

	Hex 格式
从机地址	01
功能码	OF
寄存器起始地址高位	00
寄存器起始地址低位	00
寄存器个数高位	00
寄存器个数低位	08
字节数	01
数据	55
CRC 低位	3E
CRC 高位	АА

对应的命令为: 01 0F 00 00 00 08 01 55 3E AA 注意: 此处数据及 CRC 请根据实际情况填写

4. 预置多个保持寄存器(对应 DA0)

	Hex 格式
从机地址	01
功能码	10
寄存器起始地址高位	00
寄存器起始地址低位	10
寄存器个数高位	00
寄存器个数低位	02
字节数	04
数据1高位	00
数据1低位	00
数据2高位	40
数据2低位	00
CRC 低位	C3
CRC 高位	63

对应的命令为: 01 10 00 10 00 02 04 00 00 40 00 C3 63 注意: 此处数据及 CRC 请根据实际情况填写

5. 预置多个保持寄存器(对应 DA1)

	Hex 格式
从机地址	01
功能码	10
寄存器起始地址高位	00
寄存器起始地址低位	12

寄存器个数高位	00
寄存器个数低位	02
字节数	04
数据1高位	00
数据1低位	00
数据2高位	00
数据2低位	00
CRC 低位	73
CRC 高位	7A

对应的命令为: 01 10 00 12 00 02 04 00 00 00 07 7A 注意: 此处数据及 CRC 请根据实际情况填写

6. 读保持寄存器(对应 DA0 参数)

	Hex 格式
从机地址	01
功能码	03
寄存器起始地址高位	00
寄存器起始地址低位	10
寄存器个数高位	00
寄存器个数低位	02
CRC 低位	C5
CRC 高位	CE

对应的命令为: 01 03 00 10 00 02 C5 CE

7. 读保持寄存器(对应 DA1 参数)

	Hex 格式
从机地址	01
功能码	03
寄存器起始地址高位	00
寄存器起始地址低位	12
寄存器个数高位	00
寄存器个数低位	02
CRC 低位	64
CRC 高位	0E

对应的命令为: 01 03 00 12 00 02 64 0E

第七章 故障诊断

以下是 A-GPRS1081 常见故障及其可能的原因和解决方法。如果仍有问题,用户可直接与 ART 公司的技术 支持联系,获得技术支持。

- 1、 模块不能上线,可能原因为:
 - a) 天线接触不好;
 - b) SIM 卡接触不好;
 - c) SIM 卡欠费;
 - d) 网络未连通;
 - e) 公网 IP 变化或花生壳断开。
 - f) 设备损坏。
- 2、 模块正常工作一段时间后自动断线,可能原因为:
 - a)网络连接不通畅或网速慢(网络延时);
 - b) 若用公网 IP, 有可能是公网 IP 地址变化;
 - c) SIM 卡欠费;
 - d) 模块在设置时间内一次收发的数据过大。
- 3、AD 读取的数据误差在允许的误差精度外,可能是未对 AD 进行调零和调满。